
A Biologically-Inspired Approach to Network Traffic Classification for Resource-

Constrained Systems

Brian Schmidt, Dionysios Kountanis, Ala Al-Fuqaha
Computer Science Department

College of Engineering and Applied Sciences

Western Michigan University

Kalamazoo, Michigan, USA

{brian.h.schmidt, dionysios.kountanis, ala.al-fuqaha}@wmich.edu

Abstract—Internet traffic classification has been studied

widely in recent years, and many machine learning approaches

have been applied to it. Internet traffic classification has

increased in relevance in recent years because of its potential

applications in the business world. Information about network

traffic has many benefits in network design, security,

management and accounting. Internet traffic classification is

especially important to the adaptive networks often used in cloud

computing, which must use data gleaned from the network to

adjust to network conditions on-the-fly. This information is most

easily collated from the huge amount of information going

through a modern network with machine learning algorithms,

which adjust themselves to the conditions of the network. In

previous research, Artificial Immune System (AIS) algorithms

have been used to classify malicious and benign network traffic

in support of Intrusion Detection Systems [1]. Because of their

versatility and their low sensitivity to the values of the input

parameters, we are motivated to explore the value of using AIS

inspired algorithms in support of flow-based traffic classification.

In this paper, we propose an AIS inspired algorithm for flow-

based traffic classification, and evaluate its performance with

and without the use of kernel functions. We utilize a publicly-

available dataset to compare our results with other approaches

that have been proposed in the recent literature. We provide

several measures of the classification performance of the

algorithm, as well as share our experience on the best features of

the algorithm for this particular application. We also evaluate the

proposed algorithm, comparing it with two other classification

algorithms, and draw conclusions based on our findings. The

algorithm generalizes well and gives high accuracy even with a

small training set when compared to other algorithms, although

the training and classification times were higher. The algorithm

is also insensitive to the values of the input parameters, which

makes it attractive for embedded and Internet of Things

applications. The research presented here is a longer exposition

of the work in [2].

Keywords—artificial immune systems; internet traffic

classification; multi-class classification; machine learning

I. INTRODUCTION

Because of problems with the fair use of the Internet, it has
become more and more important in recent years to classify
network traffic. There have been a few driving forces behind
these developments, for example: (a) the use of the Internet to
share copyrighted material, (b) the struggle between malicious
hackers and security professionals, (c) the question of network
neutrality [3].

Internet traffic classification has evolved over the years,
and the techniques used to solve it have grown in complexity
as well. Simply, classification of packet flows on a network can
be accomplished by using well-known port numbers. This
approach is fast and simple but is often inaccurate. The
effectiveness of this approach to traffic classification has
declined in recent years [4].

Another way to classify packet flows has been to inspect
the data payload that a packet contains. This is often accurate,
but is computationally intensive while also being easily fooled
by encryption. To surpass the challenge of encrypted data, the
host behavior based approach examines interactions between
hosts can be compared to stored patterns. Another approach is
to use the statistical features of a packet flow to classify it. This
approach uses techniques from data mining and Machine
Learning (ML). A characteristic of this approach is that it does
not need to inspect the contents of packets to enable it to
classify the flow, thus avoiding legal and ethical quandaries.

The focus of this paper will be to use the statistical features
of a packet flow to classify it using a multi-class artificial
immune system inspired algorithm. The remainder of the paper
is organized as follows: in Section II, we survey some of the
machine learning algorithms used in support of flow-based
traffic classification. In Section III, artificial immune system
classifiers are introduced, along with variations and
improvements in support of multi-class classification. Section
IV introduces our own AIS inspired algorithm. Sections V and
VI describe our experimental setup and results. Finally, in
Section VII, we draw conclusions based on our experimental
results and discuss future research directions.

II. THE TRAFFIC CLASSIFICATION PROBLEM IN MACHINE

LEARNING

The flow classification problem can be solved by using the

statistical features of the information on the network. Some of

the information that can be used to classify network flows is:

port numbers, inter-packet delay, packet counts, as well as

calculated features such as the averages and medians of these

values.
In [5], Moore and Zuev applied a Naive Bayes classifier to

the traffic classification problem. A simple naive Bayes
classifier did not do well at first, with an average 65.3%
classification accuracy. The accuracy rose, however, when
kernel density estimation and Fact Correlation-Based Filtering
(FCBF) were applied. The techniques were tested separately

and jointly with the best performance achieved with all
techniques used at the same time, achieving 96.3% average
classification accuracy.

In [6], Alshammari and Zincir-Heywood, applied Support
Vector Machines (SVM), Naive Bayes, RIPPER, and C4.5
algorithms using three publicly available datasets, focusing on
classifying encrypted traffic. Singh and Agrawal [7] also
applied several of the same ML algorithms as [6] to perform
traffic classification, the algorithms being: Bayesian networks,
multi-layer perceptron, C4.5 trees, Naive Bayes and the Radial
Basis Function Neural Network.

To the best of our knowledge, our work makes the first
attempt to apply an AIS inspired algorithm to the network
traffic classification problem. Our work is motivated by the
versatility of the immune system inspired algorithms and their
low sensitivity to the values of the input parameters compared
to other evolutionary, machine learning and optimization based
approaches. Furthermore, AIS algorithms have been used
extensively in Network Intrusion Detection systems, which
also classify network traffic. [1]

III. ARTIFICIAL IMMUNE SYSTEMS

In the following subsections, we provide a brief overview

of Natural Immune Systems (NAS), training methods and their

variations in support of multi-class classification.

A. Natural Immune Systems

NAS have developed to protect biological systems from
outside threats, such as bacteria, viruses, and parasites,
collectively known as pathogens. The role of NAS can be
divided into two activities: recognition and elimination of
pathogens. We focus on the recognition aspect of NAS in this
paper, which differentiates between “self” (the tissues of the
host), and “non-self” (everything else). The NAS can be
divided into two sections: the innate immune system, which is
fixed and not adaptable, and the acquired immune system,
which adapts to the specific pathogens to which the host is
exposed. The acquired immune system is of interest to
computer scientists and has inspired a whole class of
classification algorithms because of its ability to learn and
recall from past experiences. The authors of [1] provide a good
introduction to the use of AIS algorithms in support of
intrusion detection systems.

B. Training Methods

The cells in the NAS that recognize pathogens and label
them for disposal are called B-cells and T-cells. They are
trained to recognize non-self tissues and pathogens in a two
different ways, which are explained below.

Each B-cell generates detectors, which are called
“antibodies”, that are able to recognize pathogens through the
particular proteins shown on their surface. Through the process
of negative selection, B-cells are generated randomly, and then
destroyed in the thymus before they mature, if their antibodies
match “self” tissues. In this way, only B-cells that recognize
non-self tissues are kept in the body.

Clonal selection occurs when a B-cell or T-cell detects a
pathogen, copying itself many times to start the immune
response. During copying, the cells are subjected to errors
which mutate the new cells slightly, and change the detector.
Through clonal selection and the accompanying mutations, a
population is able to adapt itself to an attack on the organism,
and do so with the minimal amount of resources. The process

has some similarity to genetic mutations. Also, clonal selection
can be controlled through limited parameters and does not
require the definition of potentially complex encoding,
mutation, cross-over and selection operators as in the case of
genetic algorithms.

Negative selection and clonal selection have been adapted
into classification and optimization algorithms. An antibody
within an AIS algorithm is an implementation of a simple
classifier. Artificial immune systems used for classification are
ensemble classifiers.

C. Multi-class Classification Using AIS

Although artificial immune system classifier algorithms
naturally work as two-class classifiers ("self" and "non-self"),
there has been work done to extend the techniques used for
two-class classification to multi-class classification using AIS
principles.

The earliest research that uses AIS for multi-class problems
is Goodman, Boggess, and Watkins [8], in which the Artificial
Immune Recognition System (AIRS) is proposed and tested
against Kohonen's Learning Vector Quantization (LVQ). The
concept of a resource-limited artificial immune system was
introduced by Timmis and Neal in [9] and later [10]. Similar
research on the subject of multi-class AIS algorithms was
published by Cheng and Cheng [11]. In this publication, a
hybrid algorithm combining AIS and SVM is proposed and
evaluated. The application was the diagnosis of thyroid
diseases. The classifier achieved 99.87% accuracy. Another
publication that deals with multi-class AIS algorithms is [12]
by Greensmith and Cayzer, which applies AIS to Internet
document classification. In [13], Carter introduced several
generalizations from previous research into an algorithm called
Immunos.

In [14], Markowska-Kaczmar and Kordas applied the
negative selection principle to train a multi-class AIS
algorithm. Their algorithm develops a set of antibodies for
every class in the dataset, and uses the negative selection
principle. To classify a data point, each antibody is tested
against the population, the class of antibodies that matches the
data point the least number of times is the class assigned to the
data point.

Negative selection is commonly used in AIS algorithms,
however we employ a positive selection technique, which is
essentially the reverse algorithm, which covers the space
occupied by a class. Since negative selection proved to be a
very slow training algorithm we propose a much faster training
algorithm. We also develop an alternative method for multi-
class classification. The details of our algorithm are provided in
the following section.

IV. ALGORITHM DESCRIPTION

Our AIS inspired algorithm aims to classify packet flows
into application classes. A packet flow is a sequence of packets
from one host to another. A packet flow is defined by a 5-tuple
consisting of source host, destination host, source port,
destination port and transport protocol.

 The dataset made available by Moore et al. [5] is used. The
number of features used by our algorithm is reduced to 11,
from the original set of 249 features, according to work done in
the same publication. The feature reduction process is a very
important step in machine learning, and it ensures that only the
most useful features are used to make predictions, thus saving
time and memory. The authors of [5] use a Fast Correlation-

Based Filter (FCBF) to perform feature reduction on the
dataset. We chose not to duplicate their work for our algorithm
and use only their reduced feature dataset to test our algorithm.
The features are detailed in [5], and follow the
recommendations of [15]. The features used are listed in Table
I.

 Even though the dataset is over 10 years old, we think it is a
good fit for our work since we are able to compare our
algorithm directly to the work published in [5], which is very
useful. Our algorithm classifies each packet flow into one of 12
classes. The classes are listed in Table II, along with the
applications that generated the traffic. The FTP application
class listed in the table is separated into three different classes
within the dataset, encompassing control, passive and data FTP
flows, respectively.

 Before our algorithm is applied to a network flow, the
relevant information must be extracted from the traffic on the
wire, in this section we assume that this is already done and we
only describe the workings of the training and classification
algorithms. The pseudo code of our immune system inspired
algorithm is found in Figure 1. In the algorithm, each antibody
has a location within the n-dimensional feature space (n=11 in
our case), as well as a radius which denotes the boundary
within which a data point will match the antibody. The training
and testing data is assumed to be normalized. To initialize the
population of antibodies, the training data is randomly sampled
with replacement, and the radius is initialized to zero. Each
class is allocated an equal portion of the antibody population.

 The training of the population of antibodies happens as a
one-shot algorithm. Every antibody present in the population
matches one point in the training set at the beginning of the
training phase, since the coordinates of each antibody are
centered on one training point. After this, every antibody's
radius is iteratively increased by a fixed step size, until the
antibody matches a data point that is not of its designated class.
Once the antibody reaches a non-self data point in the training
set, it decreases its radius by the same step size, in order to
prevent a misclassification. The algorithm uses a function
called error_count, which returns the number of training points
that the given antibody misclassifies.

TABLE I. CLASS LABELS AND APPLICATIONS[5]

Feature Description

Port, server Port Number at server

Number of pushed data

packets, server->client
of packets with the PUSH bit

set in the TCP header

Initial window bytes,

client->server
of bytes in the initial window

Initial window bytes,

server->client
of bytes in the initial window

Average segment size,

server->client
The average segment size

IP data bytes median,

client->server
Median of total bytes in IP

packets

Actual data packets,

client->server
of packets with at least a

byte of TCP data payload

Data bytes in the wire

variance, server->client
Variance of # of bytes in

Ethernet packet

Minimum segment size,

client->server

The minimum segment size

RTT samples,

client->server

a. The total number of Round

Trip Time (RTT) samples.

Pushed data packets,

client->server

of packets with the PUSH bit

set in the TCP header

TABLE II. CLASS LABELS AND APPLICATIONS[5]

Class Label Applications

FTP-CONTROL, FTP-

PASV, FTP-DATA

FTP

DATABASE Postgres, Sqlnet, Oracle

INTERACTIVE SSH,rlogin, telnet

MAIL IMAP, POP2/3, SMTP

SERVICES X11, DNS, ident, LDAP,

NTP

WWW WWW

P2P KaZaA, BitTorrent

ATTACK Worm and virus attacks

GAMES Half-Life

MULTIMEDIA Windows Media Player

During the classification phase, the captured features of the
network traffic flow that needs to be classified is matched
against the population of antibodies. The class of the first
antibody that covers the captured features by its radius provides
the classification decision. If no antibody is found to cover the
captures features, the class of the closest antibody provides the
classification decision. In such cases, the proposed algorithm
works like the k-NN algorithm, when k is equal to 1. If the k-
NN algorithm is unable to classify a pattern because it is the
same distance from more than one antibody, then one of the
classes that the antibodies belong to is chosen at random.

Throughout the tests done for this paper, the radius increase
step size was chosen to be 0.01. If this value is too large, the
classifier performance will suffer, if it is too small, the training
will take longer. In general, this value should be chosen to be
half the distance between the two closest points in the training
dataset.

In this work, we worked exclusively with the Euclidean
distance function to measure distances between points. We also
experimented with the linear, polynomial and Gaussian kernels
to try to increase the accuracy of the algorithm, as previously
done in [16]. Kernel functions are used in other classifiers to
deal with data that is not linearly separable into classes. Kernel
functions are able to deal with this by projecting the data into
higher dimensional spaces, were it can be more easily
separated. Kernel functions are used extensively with SVM
classifiers.

V. MODEL VALIDATION AND EXPERIMENTAL SETUP

Model validation was done using a 10-fold cross validation

process. This means that the dataset used to train and test the

algorithm is sampled from the original dataset and 10 sub

datasets are created. Stratification is used as well, which

means that the 10 subsets are sampled so that each class is

evenly represented in each subset. The split between testing,

validation, and training sets is 10%/10%/80%, respectively.

Even though the dataset contains 370,000 flows, we chose

to limit the number of flows that we use to train and test the

algorithm. The reason is that using larger datasets would cause

the accuracy of the algorithm to unpredictably increase in

some cases. This would give unreliable results and prevent us

from evaluating the true performance of the algorithm.

Using 10 sub datasets, each test was performed 10 times,

and at the end, the results were averaged. The tests are based

on the work in [17] and [18], and follow the recommendations

found in [3]. The algorithm is coded in Python. The algorithm

Fig 1. Immune system inspired Network Flow Classification.

was tested four times, without a kernel, with a polynomial

kernel, a linear kernel and a Gaussian kernel. The parameters

for the kernels were chosen using a simple grid search

technique with the validation set described above. The kernel

functions were implemented as described in [16].

We also compared our algorithm to Naïve Bayes and SVM

classifiers. Since all of the variables in the dataset are

continuous, we used a Gaussian Naïve Bayes classifier, in

which the model parameters were calculated using Maximum

Likelihood Estimation. For the SVM classifier, we used a

“one-versus-all” classifier without any kernels. We have

chosen to display the results from these classifiers in the same

figures in the interest of saving space.

VI. EXPERIMENTAL RESULTS

The first experiment performed was to calculate the

classification accuracy vis-a-vis the size of the population of

antibodies, as seen in Figure 2. The size of the dataset was

held constant at 1000 flows, and the proportions of the testing,

validation and training sets were 10%/10%/80% respectively,

and is the same for every test in this paper. The size of the

population of antibodies was increased from 200 to 1000

members. The accuracy of the algorithm rose from 81.8% to

91% without the kernel trick. The best performance on this

test was achieved with the linear kernel, with 92.3% accuracy.

This figure also includes the accuracy of Naïve Bayes and

SVM algorithms, which were trained with datasets of the same

size as the AIS algorithm. These two classifiers do not use an

antibody population to perform classification, and are included

to serve as a baseline of comparison. The maximum accuracy

of the Naïve Bayes algorithm is 82.2%, and the maximum

accuracy of the SVM classifier is 44.1%.

The second experiment performed was used to study the
classification accuracy achieved by the algorithm as the size of
the dataset is increased. In this experiment, the size of the
dataset was increased from 200 to 1000 elements. The results
are shown in Figure 3. The antibody population was held
constant at 1000 members. The accuracy of the algorithm
remained fairly constant, varying between 86% and 92.3%
without the kernel trick. The best performance was achieved by
the polynomial kernel, with 93.6% accuracy. The accuracy of
Naïve Bayes and SVM classifiers is also shown. The SVM
classifier achieved a maximum accuracy of 42.6%, and the
Naïve Bayes classifier achieved a maximum accuracy of
83.5%.

Figure 3 illustrates the ability of the algorithm to generalize

well from small samples of data, especially when compared to

the SVM and Naive Bayes algorithms. The highest accuracy

was achieved between 200 and 500 training data points, and

decreases after that.

Kernels improve an algorithms’ performance by projecting

the data into a higher-dimensional space in which the class

boundaries are more easily defined. Figures 2 and 3 illustrate

that using kernels does not improve the performance of the

algorithm significantly. This observation is particularly

important when utilizing our classification problem in memory

constrained embedded systems, as in the case of the Internet of

Things (IoT).

The third experiment performed was used to calculate the

amount of time required to classify 100 elements in the testing

set. The value of 100 elements is a side effect of the fact that

Definitions:

training_set: set of training vectors, class label is the first

element of the vectors

classes: the set of class labels collected from the dataset

antibody: the basic element of the population

population: the set of antibodies used to classify flows

error_count: function which returns the number of

misclassifications performed by an antibody

step_size: a parameter given to the algorithm

population_size: a parameter, the desired size of the

antibody population

1. Initialization:

training set = normalize(training_set)

population = {}

FOREACH { c | c ∈ classes }

 class_data = { i | i ∈ training_set, i[0] = c }

 counter = 0

 WHILE counter < ⌈population_size
|classes|

⌉

new_antibody=[center=random(class data),

radius=0.0, class=c]

 population = population ∪ new_antibody

 counter = counter + 1

 ENDWHILE

ENDFOREACH

2. Training:

FOREACH {p | p ∈ population}

 changed = True

 WHILE changed

 IF error_count(p) > 0

 p[radius] = p[radius] - step_size

 changed = False

 ELSE

 p[radius] = p[radius] + step_size

 changed = True

 ENDWHILE

ENDFOREACH

3. Classification:

distances = {}

FOREACH { p | p ∈ population }

 d = distance(pattern, p)

 IF d <= p[radius]:

 return p[class]

 ELSE

 distances = distances ∪ {(p[class], d)}

ENDFOREACH

a = argmin distance(pattern, a) {a | a ∈ population}

return a[class]

the size of the dataset was held constant at 1000, with a

10%/10%/80% split between testing, validation, and training

sets, respectively. The antibody population was increased from

200 elements to 1000 elements, and the algorithm was trained

with a dataset size held constant at 1000 elements. The results

are illustrated in Figure 4, with the time displayed in seconds.

The classification time is linearly related to the number of

antibodies in the population. Naïve Bayes and SVM classifiers

were trained on datasets of 1000 elements as well, and are

included to serve as a baseline of comparison. These

classifiers do not use a population of antibodies to perform

classification, and are faster than our AIS algorithm, their lines

run along the bottom of the graph.

The fourth experiment performed was used to calculate the

amount of time required to train the population of antibodies

against the size of the dataset. The size of the dataset was

increased from 200 elements to 1000 elements, with the

training data being 80% of that. The antibody population size

remained constant at 1000 members. The results are shown in

Figure 5, with the time displayed in seconds. It can be seen

that the relationship is roughly linear. The SVM and Naïve

Bayes classifiers were also trained with a dataset of the same

size, their training times were faster and can be seen along the

bottom of the graph. Even though the time required by our

algorithm with and without kernel methods was largely the

same, we chose to include the data in the charts for

completeness.

When compared against the results from [3], one fact

stands out: the AIS algorithm was able to achieve better or

equal accuracy than all of the other classifiers with about 1/3

of the training samples. Specifically, the average accuracy of

our AIS algorithm is about 89% when the training set contains

about 300 samples, which is about equal to the performance of

the best classifier tested in [3], the SVM classifier, when given

the same training set size. Although our classifier does not

exceed the classification accuracy of the best classifiers, it is

very good at generalizing from small training sets. This

conclusion is also supported by Figures 2 and 3.

To be able to assess the performance of the classifier on a

per-class basis, the F-measure was used. The F-measure can

be interpreted as the weighted average of precision and recall,

and has a range between 0 and 1. For this experiment, the

antibody population size was held constant at 1000, and the

dataset size was increased from 200 to 1000. The F-Measure

of a few representative classes are graphed in Figure 6. In

order to display the “FTP” class in Figures 6 and 7, we took

the average of the “FTP-CONTROL”, “FTP-PASV”, and

“FTP-DATA” classes for the measurements graphed. When

inspecting the F- measures achieved by our AIS, it can be seen

that the AIS algorithm is able to get high F-measures across

almost all classes, including classes with few training samples

present in the dataset. This is especially visible with the “P2P”

and “FTP” classes.

 The precision and recall of the classifier were also
calculated without using kernel functions. For this experiment,
the antibody population size was held constant at 1000, and the
dataset size was increased from 200 to 1000. The precision and
recall of a few representative classes are graphed in Figure 7.
All tests were performed on an Intel Core i5 running at 1.8
GHz with 4 GB of memory.

Fig 2. Classification accuracy and antibody population

Fig 3. Classification accuracy and dataset size

Fig 4. Classification time and antibody population size

Fig 5. Training time and dataset size

VII. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated the application of an immune

system inspired classification algorithm to classify network

flows according to application. We illustrated the performance

of the algorithm in terms of accuracy, classification time,

training time and F-measure. We also applied kernel functions

to the algorithm and compare its performance to the Naïve

Bayes and SVM algorithms. Although the maximum accuracy

was achieved with a kernel function, we believe that the

difference is not statistically significant.

The algorithm’s accuracy is similar to other machine

learning techniques used on this problem [17][5][7]. The

algorithm is especially suitable for embedded applications

because of its insensitivity to the use of kernel functions, as

well as well as the few parameters required for its use. Since

the algorithm does not need kernel functions to perform well,

it does not requires parameters for kernel functions to be set.

We were able to improve on the accuracy of Naïve Bayes and

SVM classifiers when used with small training sets, but the

training and classification steps of our AIS algorithm are

slower.

In the future, the training and classification time of the

algorithm could be improved with the use of a k-d tree or

Bloom filter data structure. Furthermore, the algorithm is

inherently data parallel and can benefit from GPUs to speed

up the training and classification times.

Fig 6. F-measure and Dataset Size

Fig 7. Precision, Recall and Dataset Size

REFERENCES

[1] J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco and J.
Twycross, J. "Immune system approaches to intrusion detection–a
review," in Natural Computing, pp. 413-466, 2007

[2] B. Schmidt, D. Kountanis, A. A;-Fuqaha, "Artificial Immune System
Inspired Algorithm for Flow-Based Internet Traffic Classification," in
IEEE CloudCom 2014, Big Data Track, Singapore, 15-18 December
2014.

[3] H. Kim, K. C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos and
K. Lee, “Internet traffic classification demystified: myths, caveats,
and the best practices,” in Proceedings of the 2008 ACM CoNEXT
conference, pp. 11, December 2008

[4] A. W. Moore and K. Papagiannaki, “Toward the accurate
identification of network applications,” in Passive and Active
Network Measurement, pp. 41-54, 2005

[5] A. W. Moore and D. Zuev, “Internet traffic classification using
bayesian analysis techniques,” in ACM SIGMETRICS Performance
Evaluation Review, Vol. 33, No. 1, pp. 50-60, June 2005

[6] R. Alshammari and A. N. Zincir-Heywood, "Machine learning based
encrypted traffic classification: Identifying ssh and skype," in IEEE
Symposium on Computational Intelligence for Security and Defense
Applications (CISDA2009), pp. 1-8, 2009

[7] K. Singh and S. Agrawal, “Comparative analysis of five machine
learning algorithms for IP traffic classification,” in 2011 International
Conference on Emerging Trends in Networks and Computer
Communications (ETNCC), pp. 33-38, April 2011

[8] D. E. Goodman, L. Boggess, and A. Watkins, “Artificial immune
system classification of multiple-class problems,” in Proceedings of
the artificial neural networks in engineering, vol. 2, pp. 179-183,
2002

[9] J. Timmis and M. Neal, "Investigating the evolution and stability of a
resource limited artificial immune system," in Proceedings of the

genetic and evolutionary computation conference (GECCO), pp. 40-
41, 2000

[10] J. Timmis and M. Neal, “A resource limited artificial immune system
for data analysis,” in Knowledge-Based Systems, 14(3), pp. 121-130,
2001

[11] H. P. Cheng, and C. S. Cheng, “A hybrid multiclass classifier based
on artificial immune algorithm and support vector machine,” in 3rd
International Conference on Data Mining and Intelligent Information
Technology Applications (ICMiA), pp. 46-50, 2011

[12] J. Greensmith and S. Cayzer, “An artificial immune system approach
to semantic document classification,” in Artificial Immune Systems,
pp. 136-146, 2003

[13] J. H. Carter, “The immune system as a model for pattern recognition
and classification,” in Journal of the American Medical Informatics
Association, 7(1), pp. 28-41, 2000

[14] U. Markowska-Kaczmar and B. Kordas, “Multi-class iteratively
refined negative selection classifier,” in Applied Soft Computing, pp.
972-984, 2008

[15] Y. S. Lim, H. C. Kim, J. Jeong, C. K. Kim, T. T. Kwon and Y. Choi,
“Internet traffic classification demystified: on the sources of the
discriminative power,” in Proceedings of the 6th International
Conference, pp. 9, November 2010

[16] T. S. Guzella, T. A. Mota-Santos &W. M. Caminhas, “Artificial
immune systems and kernel methods,” in Artificial Immune Systems,
pp. 303-315, 2008

[17] T. T. Nguyen, and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” in Communications
Surveys & Tutorials, 10(4), pp. 56-76, 2008

[18] S. Ubik and P. Zejdl, “Evaluating application-layer classification
using a Machine Learning technique over different high speed
networks,” in Fifth International Conference on Systems and
Networks Communications (ICSNC), pp. 387-391, August 2011

