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Abstract—Internet traffic classification has been studied 

widely in recent years, and many machine learning approaches 

have been applied to it. Internet traffic classification has 

increased in relevance in recent years because of its potential 

applications in the business world. Information about network 

traffic has many benefits in network design, security, 

management and accounting. Internet traffic classification is 

especially important to the adaptive networks often used in cloud 

computing, which must use data gleaned from the network to 

adjust to network conditions on-the-fly. This information is most 

easily collated from the huge amount of information going 

through a modern network with machine learning algorithms, 

which adjust themselves to the conditions of the network. In 

previous research, Artificial Immune System (AIS) algorithms 

have been used to classify malicious and benign network traffic 

in support of Intrusion Detection Systems [1]. Because of their 

versatility and their low sensitivity to the values of the input 

parameters, we are motivated to explore the value of using AIS 

inspired algorithms in support of flow-based traffic classification.  

In this paper, we propose an AIS inspired algorithm for flow-

based traffic classification, and evaluate its performance with 

and without the use of kernel functions. We utilize a publicly-

available dataset to compare our results with other approaches 

that have been proposed in the recent literature. We provide 

several measures of the classification performance of the 

algorithm, as well as share our experience on the best features of 

the algorithm for this particular application. We also evaluate the 

proposed algorithm, comparing it with two other classification 

algorithms, and draw conclusions based on our findings. The 

algorithm generalizes well and gives high accuracy even with a 

small training set when compared to other algorithms, although 

the training and classification times were higher. The algorithm 

is also insensitive to the values of the input parameters, which 

makes it attractive for embedded and Internet of Things 

applications. The research presented here is a longer exposition 

of the work in [2]. 
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I.  INTRODUCTION  

Because of problems with the fair use of the Internet, it has 
become more and more important in recent years to classify 
network traffic. There have been a few driving forces behind 
these developments, for example: (a) the use of the Internet to 
share copyrighted material, (b) the struggle between malicious 
hackers and security professionals, (c) the question of network 
neutrality [3].  

Internet traffic classification has evolved over the years, 
and the techniques used to solve it have grown in complexity 
as well. Simply, classification of packet flows on a network can 
be accomplished by using well-known port numbers. This 
approach is fast and simple but is often inaccurate. The 
effectiveness of this approach to traffic classification has 
declined in recent years [4].  

Another way to classify packet flows has been to inspect 
the data payload that a packet contains. This is often accurate, 
but is computationally intensive while also being easily fooled 
by encryption. To surpass the challenge of encrypted data, the 
host behavior based approach examines interactions between 
hosts can be compared to stored patterns. Another approach is 
to use the statistical features of a packet flow to classify it. This 
approach uses techniques from data mining and Machine 
Learning (ML). A characteristic of this approach is that it does 
not need to inspect the contents of packets to enable it to 
classify the flow, thus avoiding legal and ethical quandaries.  

The focus of this paper will be to use the statistical features 
of a packet flow to classify it using a multi-class artificial 
immune system inspired algorithm. The remainder of the paper 
is organized as follows: in Section II, we survey some of the 
machine learning algorithms used in support of flow-based 
traffic classification. In Section III, artificial immune system 
classifiers are introduced, along with variations and 
improvements in support of multi-class classification. Section 
IV introduces our own AIS inspired algorithm. Sections V and 
VI describe our experimental setup and results. Finally, in 
Section VII, we draw conclusions based on our experimental 
results and discuss future research directions.  

II. THE TRAFFIC CLASSIFICATION PROBLEM IN MACHINE 

LEARNING 

The flow classification problem can be solved by using the 

statistical features of the information on the network. Some of 

the information that can be used to classify network flows is: 

port numbers, inter-packet delay, packet counts, as well as 

calculated features such as the averages and medians of these 

values.  
In [5], Moore and Zuev applied a Naive Bayes classifier to 

the traffic classification problem. A simple naive Bayes 
classifier did not do well at first, with an average 65.3% 
classification accuracy. The accuracy rose, however, when 
kernel density estimation and Fact Correlation-Based Filtering 
(FCBF) were applied. The techniques were tested separately 



and jointly with the best performance achieved with all 
techniques used at the same time, achieving 96.3% average 
classification accuracy.  

In [6], Alshammari and Zincir-Heywood, applied Support 
Vector Machines (SVM), Naive Bayes, RIPPER, and C4.5 
algorithms using three publicly available datasets, focusing on 
classifying encrypted traffic. Singh and Agrawal [7] also 
applied several of the same ML algorithms as [6] to perform 
traffic classification, the algorithms being: Bayesian networks, 
multi-layer perceptron, C4.5 trees, Naive Bayes and the Radial 
Basis Function Neural Network.  

To the best of our knowledge, our work makes the first 
attempt to apply an AIS inspired algorithm to the network 
traffic classification problem. Our work is motivated by the 
versatility of the immune system inspired algorithms and their 
low sensitivity to the values of the input parameters compared 
to other evolutionary, machine learning and optimization based 
approaches. Furthermore, AIS algorithms have been used 
extensively in Network Intrusion Detection systems, which 
also classify network traffic. [1] 

III. ARTIFICIAL IMMUNE SYSTEMS 

In the following subsections, we provide a brief overview 

of Natural Immune Systems (NAS), training methods and their 

variations in support of multi-class classification. 

A. Natural Immune Systems 

NAS have developed to protect biological systems from 
outside threats, such as bacteria, viruses, and parasites, 
collectively known as pathogens. The role of NAS can be 
divided into two activities: recognition and elimination of 
pathogens. We focus on the recognition aspect of NAS in this 
paper, which differentiates between “self” (the tissues of the 
host), and “non-self” (everything else). The NAS can be 
divided into two sections: the innate immune system, which is 
fixed and not adaptable, and the acquired immune system, 
which adapts to the specific pathogens to which the host is 
exposed. The acquired immune system is of interest to 
computer scientists and has inspired a whole class of 
classification algorithms because of its ability to learn and 
recall from past experiences. The authors of [1] provide a good 
introduction to the use of AIS algorithms in support of 
intrusion detection systems. 

B. Training Methods 

The cells in the NAS that recognize pathogens and label 
them for disposal are called B-cells and T-cells. They are 
trained to recognize non-self tissues and pathogens in a two 
different ways, which are explained below. 

Each B-cell generates detectors, which are called 
“antibodies”, that are able to recognize pathogens through the 
particular proteins shown on their surface. Through the process 
of negative selection, B-cells are generated randomly, and then 
destroyed in the thymus before they mature, if their antibodies 
match “self” tissues. In this way, only B-cells that recognize 
non-self tissues are kept in the body. 

Clonal selection occurs when a B-cell or T-cell detects a 
pathogen, copying itself many times to start the immune 
response. During copying, the cells are subjected to errors 
which mutate the new cells slightly, and change the detector. 
Through clonal selection and the accompanying mutations, a 
population is able to adapt itself to an attack on the organism, 
and do so with the minimal amount of resources. The process 

has some similarity to genetic mutations. Also, clonal selection 
can be controlled through limited parameters and does not 
require the definition of potentially complex encoding, 
mutation, cross-over and selection operators as in the case of 
genetic algorithms.  

Negative selection and clonal selection have been adapted 
into classification and optimization algorithms. An antibody 
within an AIS algorithm is an implementation of a simple 
classifier. Artificial immune systems used for classification are 
ensemble classifiers. 

C. Multi-class Classification Using AIS 

Although artificial immune system classifier algorithms 
naturally work as two-class classifiers ("self" and "non-self"), 
there has been work done to extend the techniques used for 
two-class classification to multi-class classification using AIS 
principles. 

The earliest research that uses AIS for multi-class problems 
is Goodman, Boggess, and Watkins [8], in which the Artificial 
Immune Recognition System (AIRS) is proposed and tested 
against Kohonen's Learning Vector Quantization (LVQ). The 
concept of a resource-limited artificial immune system was 
introduced by Timmis and Neal in [9] and later [10]. Similar 
research on the subject of multi-class AIS algorithms was 
published by Cheng and Cheng [11]. In this publication, a 
hybrid algorithm combining AIS and SVM is proposed and 
evaluated. The application was the diagnosis of thyroid 
diseases. The classifier achieved 99.87% accuracy. Another 
publication that deals with multi-class AIS algorithms is [12] 
by Greensmith and Cayzer, which applies AIS to Internet 
document classification. In [13], Carter introduced several 
generalizations from previous research into an algorithm called 
Immunos. 

In [14], Markowska-Kaczmar and Kordas applied the 
negative selection principle to train a multi-class AIS 
algorithm. Their algorithm develops a set of antibodies for 
every class in the dataset, and uses the negative selection 
principle. To classify a data point, each antibody is tested 
against the population, the class of antibodies that matches the 
data point the least number of times is the class assigned to the 
data point. 

Negative selection is commonly used in AIS algorithms, 
however we employ a positive selection technique, which is 
essentially the reverse algorithm, which covers the space 
occupied by a class. Since negative selection proved to be a 
very slow training algorithm we propose a much faster training 
algorithm. We also develop an alternative method for multi-
class classification. The details of our algorithm are provided in 
the following section. 

IV. ALGORITHM DESCRIPTION 

Our AIS inspired algorithm aims to classify packet flows 
into application classes. A packet flow is a sequence of packets 
from one host to another. A packet flow is defined by a 5-tuple 
consisting of source host, destination host, source port, 
destination port and transport protocol. 

 The dataset made available by Moore et al. [5] is used. The 
number of features used by our algorithm is reduced to 11, 
from the original set of 249 features, according to work done in 
the same publication. The feature reduction process is a very 
important step in machine learning, and it ensures that only the 
most useful features are used to make predictions, thus saving 
time and memory. The authors of [5] use a Fast Correlation-



Based Filter (FCBF) to perform feature reduction on the 
dataset. We chose not to duplicate their work for our algorithm 
and use only their reduced feature dataset to test our algorithm. 
The features are detailed in [5], and follow the 
recommendations of [15]. The features used are listed in Table 
I. 

 Even though the dataset is over 10 years old, we think it is a 
good fit for our work since we are able to compare our 
algorithm directly to the work published in [5], which is very 
useful. Our algorithm classifies each packet flow into one of 12 
classes. The classes are listed in Table II, along with the 
applications that generated the traffic. The FTP application 
class listed in the table is separated into three different classes 
within the dataset, encompassing control, passive and data FTP 
flows, respectively. 

 Before our algorithm is applied to a network flow, the 
relevant information must be extracted from the traffic on the 
wire, in this section we assume that this is already done and we 
only describe the workings of the training and classification 
algorithms. The pseudo code of our immune system inspired 
algorithm is found in Figure 1. In the algorithm, each antibody 
has a location within the n-dimensional feature space (n=11 in 
our case), as well as a radius which denotes the boundary 
within which a data point will match the antibody. The training 
and testing data is assumed to be normalized. To initialize the 
population of antibodies, the training data is randomly sampled 
with replacement, and the radius is initialized to zero. Each 
class is allocated an equal portion of the antibody population. 

 The training of the population of antibodies happens as a 
one-shot algorithm. Every antibody present in the population 
matches one point in the training set at the beginning of the 
training phase, since the coordinates of each antibody are 
centered on one training point. After this, every antibody's 
radius is iteratively increased by a fixed step size, until the 
antibody matches a data point that is not of its designated class. 
Once the antibody reaches a non-self data point in the training 
set, it decreases its radius by the same step size, in order to 
prevent a misclassification. The algorithm uses a function 
called error_count, which returns the number of training points 
that the given antibody misclassifies. 

TABLE I.  CLASS LABELS AND APPLICATIONS[5] 

Feature Description 

Port, server Port Number at server 

Number of pushed data 

packets, server->client 
# of packets with the PUSH bit 

set in the TCP header 

Initial window bytes,  

client->server 
# of bytes in the initial window 

Initial window bytes, 

server->client 
# of bytes in the initial window 

Average segment size, 

server->client 
The average segment size 

IP data bytes median, 

client->server 
Median of total bytes in IP 

packets 

Actual data packets, 

client->server 
# of packets with at least a 

byte of TCP data payload 

Data bytes in the wire 

variance, server->client 
Variance of # of bytes in 

Ethernet packet 

Minimum segment size, 

client->server 

The minimum segment size 

RTT samples,                 

client->server 

a. The total number of Round 

Trip Time (RTT) samples. 

Pushed data packets, 

client->server 

# of packets with the PUSH bit 

set in the TCP header 

TABLE II.  CLASS LABELS AND APPLICATIONS[5] 

Class Label Applications 

FTP-CONTROL, FTP-

PASV, FTP-DATA 

FTP 

DATABASE Postgres, Sqlnet, Oracle 

INTERACTIVE SSH,rlogin, telnet 

MAIL IMAP, POP2/3, SMTP 

SERVICES X11, DNS, ident, LDAP, 

NTP 

WWW WWW 

P2P KaZaA, BitTorrent 

ATTACK Worm and virus attacks 

GAMES Half-Life 

MULTIMEDIA Windows Media Player 

 

During the classification phase, the captured features of the 
network traffic flow that needs to be classified is matched 
against the population of antibodies. The class of the first 
antibody that covers the captured features by its radius provides 
the classification decision. If no antibody is found to cover the 
captures features, the class of the closest antibody provides the 
classification decision. In such cases, the proposed algorithm 
works like the k-NN algorithm, when k is equal to 1. If the k-
NN algorithm is unable to classify a pattern because it is the 
same distance from more than one antibody, then one of the 
classes that the antibodies belong to is chosen at random. 

Throughout the tests done for this paper, the radius increase 
step size was chosen to be 0.01. If this value is too large, the 
classifier performance will suffer, if it is too small, the training 
will take longer. In general, this value should be chosen to be 
half the distance between the two closest points in the training 
dataset. 

In this work, we worked exclusively with the Euclidean 
distance function to measure distances between points. We also 
experimented with the linear, polynomial and Gaussian kernels 
to try to increase the accuracy of the algorithm, as previously 
done in [16]. Kernel functions are used in other classifiers to 
deal with data that is not linearly separable into classes. Kernel 
functions are able to deal with this by projecting the data into 
higher dimensional spaces, were it can be more easily 
separated. Kernel functions are used extensively with SVM 
classifiers. 

V.    MODEL VALIDATION AND EXPERIMENTAL SETUP 

Model validation was done using a 10-fold cross validation 

process. This means that the dataset used to train and test the 

algorithm is sampled from the original dataset and 10 sub 

datasets are created. Stratification is used as well, which 

means that the 10 subsets are sampled so that each class is 

evenly represented in each subset. The split between testing, 

validation, and training sets is 10%/10%/80%, respectively. 

Even though the dataset contains 370,000 flows, we chose 

to limit the number of flows that we use to train and test the 



algorithm. The reason is that using larger datasets would cause 

the accuracy of the algorithm to unpredictably increase in 

some cases. This would give unreliable results and prevent us 

from evaluating the true performance of the algorithm. 

Using 10 sub datasets, each test was performed 10 times, 

and at the end, the results were averaged. The tests are based 

on the work in [17] and [18], and follow the recommendations 

found in [3]. The algorithm is coded in Python. The algorithm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Immune system inspired Network Flow Classification. 

was tested four times, without a kernel, with a polynomial 

kernel, a linear kernel and a Gaussian kernel. The parameters 

for the kernels were chosen using a simple grid search 

technique with the validation set described above. The kernel 

functions were implemented as described in [16]. 

We also compared our algorithm to Naïve Bayes and SVM 

classifiers. Since all of the variables in the dataset are 

continuous, we used a Gaussian Naïve Bayes classifier, in 

which the model parameters were calculated using Maximum 

Likelihood Estimation. For the SVM classifier, we used a 

“one-versus-all” classifier without any kernels. We have 

chosen to display the results from these classifiers in the same 

figures in the interest of saving space. 

VI.    EXPERIMENTAL RESULTS 

The first experiment performed was to calculate the 

classification accuracy vis-a-vis the size of the population of 

antibodies, as seen in Figure 2. The size of the dataset was 

held constant at 1000 flows, and the proportions of the testing, 

validation and training sets were 10%/10%/80% respectively, 

and is the same for every test in this paper. The size of the 

population of antibodies was increased from 200 to 1000 

members. The accuracy of the algorithm rose from 81.8% to 

91% without the kernel trick. The best performance on this 

test was achieved with the linear kernel, with 92.3% accuracy. 

This figure also includes the accuracy of Naïve Bayes and 

SVM algorithms, which were trained with datasets of the same 

size as the AIS algorithm. These two classifiers do not use an 

antibody population to perform classification, and are included 

to serve as a baseline of comparison. The maximum accuracy 

of the Naïve Bayes algorithm is 82.2%, and the maximum 

accuracy of the SVM classifier is 44.1%. 

The second experiment performed was used to study the 
classification accuracy achieved by the algorithm as the size of 
the dataset is increased. In this experiment, the size of the 
dataset was increased from 200 to 1000 elements. The results 
are shown in Figure 3. The antibody population was held 
constant at 1000 members. The accuracy of the algorithm 
remained fairly constant, varying between 86% and 92.3% 
without the kernel trick. The best performance was achieved by 
the polynomial kernel, with 93.6% accuracy. The accuracy of 
Naïve Bayes and SVM classifiers is also shown. The SVM 
classifier achieved a maximum accuracy of 42.6%, and the 
Naïve Bayes classifier achieved a maximum accuracy of 
83.5%. 

Figure 3 illustrates the ability of the algorithm to generalize 

well from small samples of data, especially when compared to 

the SVM and Naive Bayes algorithms. The highest accuracy 

was achieved between 200 and 500 training data points, and 

decreases after that. 

Kernels improve an algorithms’ performance by projecting 

the data into a higher-dimensional space in which the class 

boundaries are more easily defined. Figures 2 and 3 illustrate 

that using kernels does not improve the performance of the 

algorithm significantly. This observation is particularly 

important when utilizing our classification problem in memory 

constrained embedded systems, as in the case of the Internet of 

Things (IoT).  

The third experiment performed was used to calculate the 

amount of time required to classify 100 elements in the testing 

set. The value of 100 elements is a side effect of the fact that 

Definitions: 

training_set: set of training vectors, class label is the first 

element of the vectors 

classes: the set of class labels collected from the dataset 

antibody: the basic element of the population 

population: the set of antibodies used to classify flows 

error_count: function which returns the number of 

misclassifications performed by an antibody  

step_size: a parameter given to the algorithm  

population_size: a parameter, the desired size of the 

antibody population 

1. Initialization: 

training set = normalize(training_set) 

population = {} 

FOREACH { c | c ∈ classes } 

    class_data = { i | i ∈ training_set, i[0] = c } 

    counter = 0 

    WHILE counter < ⌈population_size
|classes|

⌉ 

new_antibody=[center=random(class data), 

radius=0.0, class=c] 

        population = population ∪ new_antibody 

        counter = counter + 1 

    ENDWHILE 

ENDFOREACH 

2. Training:  

FOREACH {p | p ∈ population} 

    changed = True 

    WHILE changed 

        IF error_count(p) > 0 

            p[radius] = p[radius] - step_size 

            changed = False 

        ELSE 

            p[radius] = p[radius] + step_size 

            changed = True 

    ENDWHILE 

ENDFOREACH 

3. Classification: 

distances = {} 

FOREACH { p | p ∈ population } 

    d = distance(pattern, p) 

    IF d <= p[radius]: 

        return p[class] 

    ELSE 

        distances = distances ∪ {(p[class], d)} 

ENDFOREACH 

a = argmin distance(pattern, a) {a | a ∈ population} 

return a[class] 



the size of the dataset was held constant at 1000, with a 

10%/10%/80% split between testing, validation, and training 

sets, respectively. The antibody population was increased from 

200 elements to 1000 elements, and the algorithm was trained 

with a dataset size held constant at 1000 elements. The results 

are illustrated in Figure 4, with the time displayed in seconds. 

The classification time is linearly related to the number of 

antibodies in the population. Naïve Bayes and SVM classifiers 

were trained on datasets of 1000 elements as well, and are 

included to serve as a baseline of comparison. These 

classifiers do not use a population of antibodies to perform 

classification, and are faster than our AIS algorithm, their lines 

run along the bottom of the graph. 

The fourth experiment performed was used to calculate the 

amount of time required to train the population of antibodies 

against the size of the dataset. The size of the dataset was 

increased from 200 elements to 1000 elements, with the 

training data being 80% of that. The antibody population size 

remained constant at 1000 members. The results are shown in 

Figure 5, with the time displayed in seconds. It can be seen 

that the relationship is roughly linear. The SVM and Naïve 

Bayes classifiers were also trained with a dataset of the same 

size, their training times were faster and can be seen along the 

bottom of the graph. Even though the time required by our 

algorithm with and without kernel methods was largely the 

same, we chose to include the data in the charts for 

completeness. 

When compared against the results from [3], one fact 

stands out: the AIS algorithm was able to achieve better or 

equal accuracy than all of the other classifiers with about 1/3 

of the training samples. Specifically, the average accuracy of 

our AIS algorithm is about 89% when the training set contains 

about 300 samples, which is about equal to the performance of 

the best classifier tested in [3], the SVM classifier, when given 

the same training set size. Although our classifier does not 

exceed the classification accuracy of the best classifiers, it is 

very good at generalizing from small training sets. This 

conclusion is also supported by Figures 2 and 3. 

To be able to assess the performance of the classifier on a 

per-class basis, the F-measure was used. The F-measure can 

be interpreted as the weighted average of precision and recall, 

and has a range between 0 and 1. For this experiment, the 

antibody population size was held constant at 1000, and the 

dataset size was increased from 200 to 1000. The F-Measure 

of a few representative classes are graphed in Figure 6. In 

order to display the “FTP” class in Figures 6 and 7, we took 

the average of the “FTP-CONTROL”, “FTP-PASV”, and 

“FTP-DATA” classes for the measurements graphed. When 

inspecting the F- measures achieved by our AIS, it can be seen 

that the AIS algorithm is able to get high F-measures across 

almost all classes, including classes with few training samples 

present in the dataset. This is especially visible with the “P2P” 

and “FTP” classes. 

 The precision and recall of the classifier were also 
calculated without using kernel functions. For this experiment, 
the antibody population size was held constant at 1000, and the 
dataset size was increased from 200 to 1000. The precision and 
recall of a few representative classes are graphed in Figure 7. 
All tests were performed on an Intel Core i5 running at 1.8 
GHz with 4 GB of memory. 

 
Fig 2. Classification accuracy and antibody population 

 

 

Fig 3.  Classification accuracy and dataset size 

 

 

Fig 4. Classification time and antibody population size 

 

 

Fig 5. Training time and dataset size 



VII.     CONCLUSIONS AND FUTURE WORK 

In this paper we demonstrated the application of an immune 

system inspired classification algorithm to classify network 

flows according to application. We illustrated the performance 

of the algorithm in terms of accuracy, classification time, 

training time and F-measure. We also applied kernel functions 

to the algorithm and compare its performance to the Naïve 

Bayes and SVM algorithms. Although the maximum accuracy 

was achieved with a kernel function, we believe that the 

difference is not statistically significant. 

The algorithm’s accuracy is similar to other machine 

learning techniques used on this problem [17][5][7]. The 

algorithm is especially suitable for embedded applications 

because of its insensitivity to the use of kernel functions, as 

well as well as the few parameters required for its use. Since 

the algorithm does not need kernel functions to perform well, 

it does not requires parameters for kernel functions to be set. 

We were able to improve on the accuracy of Naïve Bayes and 

SVM classifiers when used with small training sets, but the 

training and classification steps of our AIS algorithm are 

slower. 

In the future, the training and classification time of the 

algorithm could be improved with the use of a k-d tree or 

Bloom filter data structure. Furthermore, the algorithm is 

inherently data parallel and can benefit from GPUs to speed 

up the training and classification times. 

 

Fig 6. F-measure and Dataset Size  

 

Fig 7. Precision, Recall and Dataset Size
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